3.752 \(\int \frac{x^2 \sqrt{\tan ^{-1}(a x)}}{(c+a^2 c x^2)^{5/2}} \, dx\)

Optimal. Leaf size=163 \[ -\frac{\sqrt{\frac{\pi }{2}} \sqrt{a^2 x^2+1} S\left (\sqrt{\frac{2}{\pi }} \sqrt{\tan ^{-1}(a x)}\right )}{4 a^3 c^2 \sqrt{a^2 c x^2+c}}+\frac{\sqrt{\frac{\pi }{6}} \sqrt{a^2 x^2+1} S\left (\sqrt{\frac{6}{\pi }} \sqrt{\tan ^{-1}(a x)}\right )}{12 a^3 c^2 \sqrt{a^2 c x^2+c}}+\frac{x^3 \sqrt{\tan ^{-1}(a x)}}{3 c \left (a^2 c x^2+c\right )^{3/2}} \]

[Out]

(x^3*Sqrt[ArcTan[a*x]])/(3*c*(c + a^2*c*x^2)^(3/2)) - (Sqrt[Pi/2]*Sqrt[1 + a^2*x^2]*FresnelS[Sqrt[2/Pi]*Sqrt[A
rcTan[a*x]]])/(4*a^3*c^2*Sqrt[c + a^2*c*x^2]) + (Sqrt[Pi/6]*Sqrt[1 + a^2*x^2]*FresnelS[Sqrt[6/Pi]*Sqrt[ArcTan[
a*x]]])/(12*a^3*c^2*Sqrt[c + a^2*c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.4249, antiderivative size = 163, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 6, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.231, Rules used = {4944, 4971, 4970, 3312, 3305, 3351} \[ -\frac{\sqrt{\frac{\pi }{2}} \sqrt{a^2 x^2+1} S\left (\sqrt{\frac{2}{\pi }} \sqrt{\tan ^{-1}(a x)}\right )}{4 a^3 c^2 \sqrt{a^2 c x^2+c}}+\frac{\sqrt{\frac{\pi }{6}} \sqrt{a^2 x^2+1} S\left (\sqrt{\frac{6}{\pi }} \sqrt{\tan ^{-1}(a x)}\right )}{12 a^3 c^2 \sqrt{a^2 c x^2+c}}+\frac{x^3 \sqrt{\tan ^{-1}(a x)}}{3 c \left (a^2 c x^2+c\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(x^2*Sqrt[ArcTan[a*x]])/(c + a^2*c*x^2)^(5/2),x]

[Out]

(x^3*Sqrt[ArcTan[a*x]])/(3*c*(c + a^2*c*x^2)^(3/2)) - (Sqrt[Pi/2]*Sqrt[1 + a^2*x^2]*FresnelS[Sqrt[2/Pi]*Sqrt[A
rcTan[a*x]]])/(4*a^3*c^2*Sqrt[c + a^2*c*x^2]) + (Sqrt[Pi/6]*Sqrt[1 + a^2*x^2]*FresnelS[Sqrt[6/Pi]*Sqrt[ArcTan[
a*x]]])/(12*a^3*c^2*Sqrt[c + a^2*c*x^2])

Rule 4944

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp
[((f*x)^(m + 1)*(d + e*x^2)^(q + 1)*(a + b*ArcTan[c*x])^p)/(d*f*(m + 1)), x] - Dist[(b*c*p)/(f*(m + 1)), Int[(
f*x)^(m + 1)*(d + e*x^2)^q*(a + b*ArcTan[c*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && EqQ[e,
 c^2*d] && EqQ[m + 2*q + 3, 0] && GtQ[p, 0] && NeQ[m, -1]

Rule 4971

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Dist[(d^(q +
1/2)*Sqrt[1 + c^2*x^2])/Sqrt[d + e*x^2], Int[x^m*(1 + c^2*x^2)^q*(a + b*ArcTan[c*x])^p, x], x] /; FreeQ[{a, b,
 c, d, e, p}, x] && EqQ[e, c^2*d] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] &&  !(IntegerQ[q] || GtQ[d, 0])

Rule 4970

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Dist[d^q/c^(m
 + 1), Subst[Int[((a + b*x)^p*Sin[x]^m)/Cos[x]^(m + 2*(q + 1)), x], x, ArcTan[c*x]], x] /; FreeQ[{a, b, c, d,
e, p}, x] && EqQ[e, c^2*d] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] && (IntegerQ[q] || GtQ[d, 0])

Rule 3312

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin
[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && ( !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 1])
)

Rule 3305

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Sin[(f*x^2)/d], x], x,
Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3351

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelS[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rubi steps

\begin{align*} \int \frac{x^2 \sqrt{\tan ^{-1}(a x)}}{\left (c+a^2 c x^2\right )^{5/2}} \, dx &=\frac{x^3 \sqrt{\tan ^{-1}(a x)}}{3 c \left (c+a^2 c x^2\right )^{3/2}}-\frac{1}{6} a \int \frac{x^3}{\left (c+a^2 c x^2\right )^{5/2} \sqrt{\tan ^{-1}(a x)}} \, dx\\ &=\frac{x^3 \sqrt{\tan ^{-1}(a x)}}{3 c \left (c+a^2 c x^2\right )^{3/2}}-\frac{\left (a \sqrt{1+a^2 x^2}\right ) \int \frac{x^3}{\left (1+a^2 x^2\right )^{5/2} \sqrt{\tan ^{-1}(a x)}} \, dx}{6 c^2 \sqrt{c+a^2 c x^2}}\\ &=\frac{x^3 \sqrt{\tan ^{-1}(a x)}}{3 c \left (c+a^2 c x^2\right )^{3/2}}-\frac{\sqrt{1+a^2 x^2} \operatorname{Subst}\left (\int \frac{\sin ^3(x)}{\sqrt{x}} \, dx,x,\tan ^{-1}(a x)\right )}{6 a^3 c^2 \sqrt{c+a^2 c x^2}}\\ &=\frac{x^3 \sqrt{\tan ^{-1}(a x)}}{3 c \left (c+a^2 c x^2\right )^{3/2}}-\frac{\sqrt{1+a^2 x^2} \operatorname{Subst}\left (\int \left (\frac{3 \sin (x)}{4 \sqrt{x}}-\frac{\sin (3 x)}{4 \sqrt{x}}\right ) \, dx,x,\tan ^{-1}(a x)\right )}{6 a^3 c^2 \sqrt{c+a^2 c x^2}}\\ &=\frac{x^3 \sqrt{\tan ^{-1}(a x)}}{3 c \left (c+a^2 c x^2\right )^{3/2}}+\frac{\sqrt{1+a^2 x^2} \operatorname{Subst}\left (\int \frac{\sin (3 x)}{\sqrt{x}} \, dx,x,\tan ^{-1}(a x)\right )}{24 a^3 c^2 \sqrt{c+a^2 c x^2}}-\frac{\sqrt{1+a^2 x^2} \operatorname{Subst}\left (\int \frac{\sin (x)}{\sqrt{x}} \, dx,x,\tan ^{-1}(a x)\right )}{8 a^3 c^2 \sqrt{c+a^2 c x^2}}\\ &=\frac{x^3 \sqrt{\tan ^{-1}(a x)}}{3 c \left (c+a^2 c x^2\right )^{3/2}}+\frac{\sqrt{1+a^2 x^2} \operatorname{Subst}\left (\int \sin \left (3 x^2\right ) \, dx,x,\sqrt{\tan ^{-1}(a x)}\right )}{12 a^3 c^2 \sqrt{c+a^2 c x^2}}-\frac{\sqrt{1+a^2 x^2} \operatorname{Subst}\left (\int \sin \left (x^2\right ) \, dx,x,\sqrt{\tan ^{-1}(a x)}\right )}{4 a^3 c^2 \sqrt{c+a^2 c x^2}}\\ &=\frac{x^3 \sqrt{\tan ^{-1}(a x)}}{3 c \left (c+a^2 c x^2\right )^{3/2}}-\frac{\sqrt{\frac{\pi }{2}} \sqrt{1+a^2 x^2} S\left (\sqrt{\frac{2}{\pi }} \sqrt{\tan ^{-1}(a x)}\right )}{4 a^3 c^2 \sqrt{c+a^2 c x^2}}+\frac{\sqrt{\frac{\pi }{6}} \sqrt{1+a^2 x^2} S\left (\sqrt{\frac{6}{\pi }} \sqrt{\tan ^{-1}(a x)}\right )}{12 a^3 c^2 \sqrt{c+a^2 c x^2}}\\ \end{align*}

Mathematica [A]  time = 0.263236, size = 133, normalized size = 0.82 \[ \frac{-9 \sqrt{2 \pi } \left (a^2 x^2+1\right )^{3/2} S\left (\sqrt{\frac{2}{\pi }} \sqrt{\tan ^{-1}(a x)}\right )+\sqrt{6 \pi } \left (a^2 x^2+1\right )^{3/2} S\left (\sqrt{\frac{6}{\pi }} \sqrt{\tan ^{-1}(a x)}\right )+24 a^3 x^3 \sqrt{\tan ^{-1}(a x)}}{72 a^3 c^2 \left (a^2 x^2+1\right ) \sqrt{a^2 c x^2+c}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^2*Sqrt[ArcTan[a*x]])/(c + a^2*c*x^2)^(5/2),x]

[Out]

(24*a^3*x^3*Sqrt[ArcTan[a*x]] - 9*Sqrt[2*Pi]*(1 + a^2*x^2)^(3/2)*FresnelS[Sqrt[2/Pi]*Sqrt[ArcTan[a*x]]] + Sqrt
[6*Pi]*(1 + a^2*x^2)^(3/2)*FresnelS[Sqrt[6/Pi]*Sqrt[ArcTan[a*x]]])/(72*a^3*c^2*(1 + a^2*x^2)*Sqrt[c + a^2*c*x^
2])

________________________________________________________________________________________

Maple [F]  time = 2.87, size = 0, normalized size = 0. \begin{align*} \int{{x}^{2}\sqrt{\arctan \left ( ax \right ) } \left ({a}^{2}c{x}^{2}+c \right ) ^{-{\frac{5}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*arctan(a*x)^(1/2)/(a^2*c*x^2+c)^(5/2),x)

[Out]

int(x^2*arctan(a*x)^(1/2)/(a^2*c*x^2+c)^(5/2),x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*arctan(a*x)^(1/2)/(a^2*c*x^2+c)^(5/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*arctan(a*x)^(1/2)/(a^2*c*x^2+c)^(5/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*atan(a*x)**(1/2)/(a**2*c*x**2+c)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2} \sqrt{\arctan \left (a x\right )}}{{\left (a^{2} c x^{2} + c\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*arctan(a*x)^(1/2)/(a^2*c*x^2+c)^(5/2),x, algorithm="giac")

[Out]

integrate(x^2*sqrt(arctan(a*x))/(a^2*c*x^2 + c)^(5/2), x)